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3 An Introduction to Digital Communication Systems
Over Discrete Memoryless Channel (DMC)

3.1 Discrete Memoryless Channel (DMC) Models

In this section, we keep our analysis of the communication system simple
by considering purely digital systems. (Recall that the transmitted signal
from an antenna is an analog waveform.) To do this, as shown in Figure [f],
we assume all non-source-coding parts of the system, including the physical
(analog) channel, can be combined into an “equivalent channel” which we
shall simply refer to in this section as the “channel”.

Digital communication system System considered in Section 3.1
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Figure 4: Equivalent Channel Considered in Section [3.1

Example 3.1. In Chapter [2| the (equivalent) channel does not change (cor-
rupt) its input. The channel output is assumed to be the same as the channel
input.
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Example 3.2. The binary symmetric channel (BSC) which is the
simplest model of a channel with errors, is shown in Figure [3]
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Figure 5: Binary symmetric channel and its channel diagram

e “Binary” means that the there are two possible values for the input and
also two possible values for the output. We normally use the symbols
0 and 1 to represent these two values.

e Passing through this channel, the input symbols are complemented

with crossover probability p. E:’f‘f‘ﬁ;“;}‘i;gg‘:ﬁ&b”'ty

e It is simple, yet it captures most of the complexity of the general prob-
lem.

Example 3.3. Consider a communication channel whose samples of input
and output are provided below

channel input Xx: 1@1111111111@2)1 1111
channel output y: 111111111@11@1 11111

Estimate the following (unconditional and conditional) probabilities by their
relative frequencies.
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Figure 6: Discrete memoryless channel

Definition 3.4. Our general model for discrete memoryless channel
(DMC) is shown in Figure [g]

e The channel input is denoted by a random variable X.
PLX =]
o The pmf px(z) is usually denoted by p(x).

o The support Sy is often denoted by X.

x X may be referred to as the channel input alphabet.
* In many DMC, |X| is a power of two.

o For finite |X|, the whole pmf p(z) is usually expressed in the form
of a row vector p or 7.
e Similarly, the channel output is denoted by a random variable Y.
o The pmf py(y) is usually denoted by ¢(y) and usually expressed in
the form of a row vector g.
o The support Sy is often denoted by Y and referred to as the chan-
nel output alphabet.

e The channel corrupts its input X in such a way that when the input
is X = x, its output Y is randomly selected from the conditional pmf

pyix (ylo).

P(AN B)

G (yley = pyix(yle) = PIY = y|X =a] = P(A[B) = P(B)

o In this context, each conditional probability py x(y|z) is usually
referred to as the channel transition probability.

o The conditional pmf py x(y|z) is usually denoted by Q(y|z).
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and usually expressed in the form of a (probability) transition
matrix Q:
W\ Yo Yoo Ysr s cem

el B QRUyix) :
z.| - PIY = j]X:x]

e | :
This matrix is often referred to as the “matrix of transition prob-
abilities” or simply the “channel matrix”.

The channel is called memoryless'”| because its channel output at
a given time is a function of the channel input at that time and is
not a function of previous channel inputs.

Here, the transition probabilities are assumed constant. However,
in many commonly encountered situations, the transition probabil-
ities are time varying. An example is the wireless mobile channel
in which the transmitter-receiver distance is changing with time.

e When the alphabets are collections of integers, we usually write p(x)

and ¢(y) as p, and ¢, respectively.

Alternatively, when the members of the alphabets are explicitly indexed
(as x1,xo,... and y1, 1o, .. .), we often define

pi =p(r;) and q; = q(y;).

3.5. The channel matrix Q is often defined or visualized in the form of the

channel diagram as shown in Figure [, Note that each arrow should be
labeled with the transition probability Q(y|z). See also Example [3.12]

0Mathematically, the condition that the channel is memoryless may be expressed as [12, Eq. 6.5-1 p.

355]

n

Pyr|xp (yi'ly) = H (Yk |7k )
k=1

where =7 denotes the vector (x1,xa,...,x,).
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Channel Input P[X = x] P[Y yIX = x] r ““C:‘l},;“ |
Alphabct row vector )

Sx =X px(x) =px)=)p pnx(ylx) = Q(ylx):>hQ matrix
Sy=Y oD =q0)=D>q | pxy(xy) =p(xy)=D P omais

row ECtOI' | | |

Channel Output Il
Alphabet P[Y=y] PX =x Y=:V]

Figure 7: Notation involved in defining and describing characteristics of digital communi-
cation channels
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Figure 8: Conversion between the channel matrix and the channel diagram.

3.6. We now have three equivalent ways to specify a binary symmetric
channel (BSC) defined in Example 3.2 A more general binary channel that
may not be symmetric is called binary asymmetric channel (BAC).

BSC P[Y =0x =0]=Q(0)0)=
P[Y =1]X =0]=Q(
P[Y =0|x =1]=Q(0[1)=
(

=
1j0)=p X

L ; Qg[l—p lp}

—1IX = _ i -
P[Y =1]x =1]=Q(1f1)=1-p p P )
BAC P[Y=0|X =0]=Q(0/0)=1-« Wy 0 1)
P[Y =1X =0]=Q(1)0) =«
P[Y =0|X =1]=Q(01)=8 Q
P[Y=1|X =1]=Q(1j1)=1-5
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Example 3.7. For the binary channel estimated in Example (3.3,
channel diagram

Y
Channel Input Alphabet Channel Transition Probabilities Channel Output Alphabet
X=S8y= io,'lg 1"%1l= 2 Conditional pmf y=5,= {0 11 ] 79" l%l =
Input Probabilities Py| x(y|x) = PlY = y|X = x|  Output Probabilities
P17 = pmfpy(x) = P[X = x] py1x(0]0) =G (olo) % 2/ 3 pmfpy(¥) = P[Y = y]=q¢(y)
ooy =Px(0) ®0. 15 pyix(110) E@UI0) = 1/3 py(0) =qsle) 2 015
P =px(1) x0.%5 pyix(0]1) =@COl1) & 1/1% py() =g ) x0.85
Input Probability Vector Py|X(1 11) =@111) 216/12 Output Probability Vector
p =[?(°J f(’)] Channel Matrix q= [%LO) OKU)]
x[6.15 0.%5) AY©° 1 t£°"’ ©.95]

Q- o |¥s V5
T 'Y

Example 3.8. Suppose, for a DMC, we have X = {xj,29} and Y =
{y1, Y2, y3}. Then, its probability transition matrix Q is of the form

Q- Q (yilz1) Q(yalz1) Q(ys|x1)
Q (y1]z2) Q(yalw2) Q(ys|x2)

You may wonder how this Q happens in physical system. Let’s suppose
that the input to the channel is binary; hence, X = {0,1} as in the BSC.
However, in this case, after passing through the channel, some bits can be
losﬂ rather than corrupted). In such case, we have three possible outputs
of the channel: 0, 1, e where the “e” represents the case in which the bit is
erased by the channel.

HWe assume the receiver knows which bits have been erased.
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Example 3.9.

Y
Channel Input Alphabet Channel Transition Probabilities Channel Output Alphabet
x={Hn T} QE(R) =05 Y= ETY
Input Probabilities Output Probabilities
Q(TIH) =0.3
pmfp(x) = P[X = x] ) pqu(y) =P[Y = _’y]
p(H) = P[X = H]‘-‘-’O-S Channel Matrix q(H) = P[Y = H]
p(T)=P[X=T]=0.? N H E T q(E) = P[Y = E]
Input Probability Vector ) 0.5 0.3 q(T) =PlY =T]
P = [0.5 o.';\-] Q= T Output Probability Vector

q

Example 3.10. Consider a DMC whose samples of input and output are
provided below x = i o, t}

111@@111@)11 2,3}
22311131323@:1)31

4 s'C

x L1
y: 11321271

11
21

Estimate its input probability vector p, output probability vector q, and Q

3 © 1 2
el = = = |/t
2 E & = T “ “
molre ro)elas 2T [E 5 2 |z,
=[o.2 0.9] 16 e e
075 © O zs]
%:[ﬁgL‘l) ¥l %L'))-l:[-f-o fo -Eb] ) ):o.'mzb‘ 0.4335 0.25 |

=[6.4 0.35 0.25]]
3.11. Observe that the sum along any row of the Q matrix is 1.

e This is different from the P matrix (the joint probability matrix) to be

discussed in [3.15] For P matrix, the sum of all elements in the matrix
is 1.
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Example 3.12. The channel diagram for a channel whose

0.5 0.2 0.3
X:{O,l}, ‘)}:{172,3}7 22[0.20.8], and Q:[O3 0.4 03]

is shown in Figure [9]

Figure 9: Channel diagram for Example

3.13. Knowing the input probability vector p and the channel (probability
transition) matrix Q, we can calculate the output probabilities q from

e e

To see this, recall the total probability theorem:” If a (finite or in-
finitely) countable collection of events { By, B, ...} is a partition of 2, then

=Y " P(ANB;) =Y P(A|B,)P(B,). (6)

= P(ANB,) + P(ANB,)
+P(ANBY)|+ P(ANB,) + P(AN B:)

For us, event A is the event [Y = y|. Applying this theorem to our
variables, we get

q(y)ZP[Yzy]IZP[XZ%Y:y]

=Y Py _y|X—x P[X =21]= ZQyIfE

T
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This calculation, illustrated below, is exactly the same as the matrix multi-
plication calculation performed to find each element of q:
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Example 3.14. For a binary symmetric channel (BSC) defined in [3.2]

¢(0)=P[Y =0]=P[Y =0,X =0]+ P[Y =0,X = 1]
—P[Y=0|X=0]P[X =0+ P[Y =0/ X =1]P[X =1]
=Q(0[0)p(0)+Q(0[1)p(1)

]
)

Q010)] _ [Q@
”[ <0|1>}—E[@<ou
Y =1 =PV =1,X=0]+P[Y =1,X = 1]

= [ p(

(1=p) Xpo+pXp

P
PY=1X=0P[X=0+P[Y =1X =1]P[X =1]
@

B

q(1)

(110)p(0) + Q(1]1)p (1)
Q)]
”[Q(lll)}_g{

Therefore,
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3.15. There is another matrix called the joint probability matrix P.

This is the matrix whose elements give the joint probabilities Py y(x,y) =
P X =uzY =y

Yy

c| - PX=z,Y=y --

We can get p(x) by adding the elements of P in the row corresponding to
x. Similarly, we can get ¢(y) by adding the elements of P in the column

| .
corresponding to .

By definition, the relationship between the conditional probability Q(y|z)
and the joint probability pxy(x,y) is
A B
PLAIB) = P[y=y 1% ==] = Q(y|z)

_pxy(z,y) PlY=y,x=x]_ PlANB)
T oplr) T Plx=x] PLB>
Equivalently,

PLAAD) = PLB) PLAYS) pxy(x,y) = p(z)Q(y|z).

R S N A
1 € X . i X — r(*)
XP X .
z :
1 &X, Xp(xm) Xin 'Z;f('c )

12 Iz lz] ) 3 g
nethia u:g,+u -
’ a0 a(y;) %0)=q

Figure 10: Conversion from the Q matrix to the P matrix and the output probability
vector q.
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Therefore, to get the matrix P from matrix Q, we need to multiply each
row of Q by the corresponding p(z). This is illustrated in Figure [10} The
same calculation could be done easily in MATLAB by first constructing a
diagonal matrix from the elements in p and then multiply this to the matrix

Q:

P = (diag (E)) Q. (7)
a 0 0 O 5 4 6 6 5a 4a 6a 6a
0O b 0 O 6 1 6 3| | 6b b 6b 3b
0 0 ¢c O 1 2 15| | ¢ 2¢ ¢ 5c
0 0 0 d 6 4 6 1 6d 4d 6d d
diag([a b ¢ d])

Remarks:

(a) Both P and Q give the statistical relationship between the two random
variables X and Y.

(b) The P matrix gives complete information about X and Y. Any proba-
bility calculation involving X and Y can be found from the P matrix.

(¢) However, from ([7)) above, we see that knowing the p vector and the Q
matrix also gives the complete information as well.

Once the P matrix is obtained, we can calculate the output probability
vector q by adding the elements of P along each column; this gives




Example 3.16. Binary Asymmetric Channel (BAC): Consider a bi-
nary input-output channel whose matrix of transition probabilities is

0.7 0.3
Q= {0.4 0.6]

If the two inputs are equally likely, find the corresponding output proba-
bility vector q and the joint probability matrix P for this channel. [I8, Ex.

11.3] 03> 0.3 27 °e3s o5 | _p
%,=ﬂ__o_ f0 0. - 0.4 0.6 x_.;;g ©.20 O.%
.'.".[D.S O-S])fo.‘_‘ OL] 12

-[o55 o.45] ':“’ °ns 1%

Example 3.17. Find the output probability vector q and the joint proba-
bility matrix P for the DMC defined in Example |3.12;

1 2
Y1 2 3 qse.0 N\ 3

(w] 0.9 0.2 0.3 - o) 0.1 o.om 0.0 ‘\

Q- 1 0.9 0.4 0.3 — 1 .24 ©0.%2 D-?-"!_

x0.% Zl z-l 21
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